Metallurgical and Materials Engineering Courses
Overview of the principles of solidification processing, the evolution of solidification microstructure, segregation, defects and the use of analytical and computational tools for the design, understanding and use of solidification processes.
Thermal, chemical, and mechanical aspects of welding using the fusion welding process. The metallurgical aspects of welding, including microstructure and properties of the weld, are also covered. Various topics on recent trends in welding research.
Elements of laminar and turbulent flow; heat transfer by conduction, convection, and radiation; and mass transfer in laminar and in turbulent flow; mathematical modeling of transport phenomena in metallurgical systems including melting and refining processes, solidification processes, packed bed systems, and fluidized bed systems.
It is an elective class for graduate students, and is aimed at providing metallurgical engineering students with in-depth knowledge of powder metallurgy technology which is one of principal technologies for manufacturing near net-shape products. This course covers all processing steps involved in transforming powders into consolidated products, starting from powder fabrication to sintering of compacted powders with emphasis on the scientific principles associated with design and operation of these processes and on the structure and physical properties of the final product. The applications and specific engineering details are used as illustration. The ultimate goal of this course is to make students be able from the materials learned to select and design the optimal processing route for any given product properties.
This course will cover fundamental technology involved in thin film processing. Plasma deposition and etch technology will be discussed. The basics of plasma processing equipment will be detailed, with special emphasis on sputtering tools. A range of thin film applications will be explored, with examples of magnetics, semiconductor, optical, and medical applications. The fundamentals of process optimization using a Design of Experiments will be taught with a test case of process optimization for the final exam.
Topics include elementary elasticity, plasticity, and dislocation theory; strengthening by dislocation substructure, and solid solution strengthening; precipitation and dispersion strengthening; fiber reinforcement; martensitic strengthening; grain-size strengthening; order hardening; dual phase microstructures, etc.
Laws of thermodynamics, equilibria, chemical potentials and equilibria in heterogeneous systems, activity functions, chemical reactions, phase diagrams, and electrochemical equilibria; thermodynamic models and computations; and application to metallurgical processes.
Mechanisms and micromechanics of strengthening in engineering materials. This course covers the physical phenomena that contribute towards high mechanical strength in engineering materials. Principles for designing high strength materials will be addressed.
Graduate-level treatments of the fundamentals of symmetry, crystallography, crystal structures, defects in crystals (including dislocation theory), and atomic diffusion.
Graduate-level treatments of symmetry, crystallography, crystal structures and defects in crystals. Application of analytical techniques to study crystal structures and textures in materials.
Influence of temperatures on behavior and properties of materials.
Advanced work of an investigative nature. Credit awarded is based on the work accomplished.
Advanced work of an investigative nature. Credit awarded is based on the work accomplished.
Credit is based on the amount of work undertaken on non-thesis related research in a metallurgical and materials engineering area, the outcome of which is a define result presented in a report, paper, manuscript, or formal presentation at a conference or an MTE seminar. Instructor permission required. No prerequisites required.
No description available.
This course provides knowledge on basic magnetism and magnetic materials of various types, and also introduces the applications. Origin of magnetism, ferro-magnetism, anti-ferro-magnetism, ferrimagnetism, hard- and soft-magnetic materials, spintronics, magnetic recording, magnetic random access memory (MRAM), spin-transfer-torque MRAM, spin transistor and Optical recording.
Topics include basic principles of operation of the transmission electron microscope, principles of electron diffraction, image interpretation, and various analytical electron-microscopy techniques as they apply to crystalline materials.
Theory, construction, and operation of the scanning electron microscope. Both imaging and x-ray spectroscopy are covered. Emphasis is placed on application and uses in metallurgical engineering and materials-related fields.
Advanced phase studies of binary, ternary, and more complex systems; experimental methods of construction and interpretation.
Fundamentals of solid state physics and quantum mechanics are covered to explain the physical principles underlying the design and operation of semiconductor devices. The second part covers applications to semiconductor microdevices and nanodevices such as diodes, transistors, lasers, and photodetectors incorporating quantum structures.
The course will cover the fundamentals and state-of-the-art techniques used in mathematical modeling and computer simulation of microstructure formation and control during the solidification and solid state transformations of materials. The concepts and methodologies covered in this course for net-shape casting and ingot remelt processes can be applied, with some modifications, to model other materials processes such as welding, deposition, and heat treatment processes. Modeling and simulation of microstructure evolution requires complex multi-scale computational areas, from computational fluid dynamics macroscopic modeling through mesoscopic to microscopic modeling, as well as strategies to link various length-scales emerged in modeling of microstructural evolution.
Credit awarded is based on the amount of work undertaken.
Credit is based on the amount of work undertaken on non-dissertation related research in a metallurgical and materials engineering area, the outcome of which is a define result presented in a report, paper, manuscript, or formal presentation at a conference or an MTE seminar. Instructor permission required.
No description available.