Metallurgical and Materials Engineering Courses

MTE
510
Hours
3
Crystalline Defects in Materials

Advanced work of an investigative nature. Credit awarded is based on the work accomplished. Defects in materials contribute significant to various properties including but not limited to deformation mechanisms, phase transformation pathways, and transport properties. This course provides a fundamental and quantitative overview of point, line, and interfacial imperfections in crystalline materials. In particular, the thermodynamic contributions, structure, and migration of these types of defects will be discussed and their impact on material behavior and/or properties.

MTE
519
Hours
3
Solidificatn Science

Overview of the principles of solidification processing, the evolution of solidification microstructure, segregation, defects and the use of analytical and computational tools for the design, understanding and use of solidification processes.

MTE
539
Hours
3
Metallurgy Of Welding

Thermal, chemical, and mechanical aspects of welding using the fusion welding process. The metallurgical aspects of welding, including microstructure and properties of the weld, are also covered. Various topics on recent trends in welding research.

Prerequisite(s): MTE 380
MTE
546
Hours
3
Macroscp Transp Mat Proc

Elements of laminar and turbulent flow; heat transfer by conduction, convection, and radiation; and mass transfer in laminar and in turbulent flow; mathematical modeling of transport phenomena in metallurgical systems including melting and refining processes, solidification processes, packed bed systems, and fluidized bed systems.

Prerequisite(s): MATH 238 and MTE 353
Prerequisite(s) with concurrency: MTE 271
MTE
549
Hours
3
Powder Metallurgy

It is an elective class for graduate students, and is aimed at providing metallurgical engineering students with in-depth knowledge of powder metallurgy technology which is one of principal technologies for manufacturing near net-shape products. This course covers all processing steps involved in transforming powders into consolidated products, starting from powder fabrication to sintering of compacted powders with emphasis on the scientific principles associated with design and operation of these processes and on the structure and physical properties of the final product. The applications and specific engineering details are used as illustration. The ultimate goal of this course is to make students be able from the materials learned to select and design the optimal processing route for any given product properties.

MTE
550
Hours
3
Plasma Processing of Thin Films

This course will cover fundamental technology involved in thin film processing. Plasma deposition and etch technology will be discussed. The basics of plasma processing equipment will be detailed, with special emphasis on sputtering tools. A range of thin film applications will be explored, with examples of magnetics, semiconductor, optical, and medical applications. The fundamentals of process optimization using a Design of Experiments will be taught with a test case of process optimization for the final exam.

Prerequisite(s): PH 105 or with permission of instructor.
MTE
556
Hours
3
Advanced Mechanical Behavior

Topics include elementary elasticity, plasticity, and dislocation theory; strengthening by dislocation substructure, and solid solution strengthening; precipitation and dispersion strengthening; fiber reinforcement; martensitic strengthening; grain-size strengthening; order hardening; dual phase microstructures, etc.

Prerequisite(s): MTE 455
MTE
562
Hours
3
Metallurgicl Thermodyn

Laws of thermodynamics, equilibria, chemical potentials and equilibria in heterogeneous systems, activity functions, chemical reactions, phase diagrams, and electrochemical equilibria; thermodynamic models and computations; and application to metallurgical processes.

Prerequisite(s): MTE 362
MTE
565
Hours
3
Atom Probe Tomography

This course introduces the theoretical background and practical information necessary to investigate materials using atom probe microscopy techniques. Topics will include the origins of the technique through field emission microscopy and its evolution into current atom probe to mography methods and instruments. The fundamentals of field emission, evaporation, desorption and other related behaviors is provided to establish an understanding of the physics of how atom probe microscopy operates. The course will also emphasize processes for assessing atom probe data quality, how to represent such data, advancements and limitations in data interpretation, and proper implementation of advanced data mining algorithms. Course instruction will be through lectures and assignments to assess student progress.

MTE
567
Hours
3
Strengthening Mechanisms in Materials

Mechanisms and micromechanics of strengthening in engineering materials. This course covers the physical phenomena that contribute towards high mechanical strength in engineering materials. Principles for designing high strength materials will be addressed.

Prerequisite(s): MTE 455 or equivalent: or permission of instructor
MTE
579
Hours
3
Advanced Physical Metallurgy

Graduate-level treatment regarding how metallurgical processing controls phase transformations and its outcomes on microstructure stability and mechanical strengthening mechanisms found in such microstructures.

MTE
583
Hours
3
Adv Structure Of Metal

Graduate-level treatments of symmetry, crystallography, crystal structures and defects in crystals. Application of analytical techniques to study crystal structures and textures in materials.

MTE
585
Hours
3
Materls At Elevd Temps

Influence of temperatures on behavior and properties of materials.

MTE
587
Hours
3
Corrosion Science & Engr

Fundamental causes of corrosion problems and failures. Emphasis is placed on tools and knowledge necessary for predicting corrosion, measuring corrosion rates, and combining this with prevention and materials selection.

Prerequisite(s): MTE 271 and CH 102 or CH 118
MTE
591
SP
Hours
1-4
Special Problems

Advanced work of an investigative nature. Credit awarded is based on the work accomplished.

Special Topics Course
MTE
592
SP
Hours
1-3
Special Problems

Advanced work of an investigative nature. Credit awarded is based on the work accomplished.

Special Topics Course
MTE
598
Hours
1-12
Non Thesis Research Hours

Credit is based on the amount of work undertaken on non-thesis related research in a metallurgical and materials engineering area, the outcome of which is a define result presented in a report, paper, manuscript, or formal presentation at a conference or an MTE seminar. Instructor permission required. No prerequisites required.

MTE
599
Hours
1-12
Thesis Research

No description available.

MTE
643
Hours
3
Magnetic Materials and Magnetic Recording

This course provides knowledge on basic magnetism and magnetic materials of various types, and also introduces the applications. Origin of magnetism, ferro-magnetism, anti-ferro-magnetism, ferrimagnetism, hard- and soft-magnetic materials, spintronics, magnetic recording, magnetic random access memory (MRAM), spin-transfer-torque MRAM, spin transistor and Optical recording.

Prerequisite(s): MTE 271 and permission of instructor.
MTE
655
Hours
4
Electron Microscopy Matl

Topics include basic principles of operation of the transmission electron microscope, principles of electron diffraction, image interpretation, and various analytical electron-microscopy techniques as they apply to crystalline materials.

MTE
670
Hours
3
Scanning Electron Microscopy

Theory, construction, and operation of the scanning electron microscope. Both imaging and x-ray spectroscopy are covered. Emphasis is placed on application and uses in metallurgical engineering and materials-related fields.

MTE
680
Hours
3
Advanced Phase Diagrams

Advanced phase studies of binary, ternary, and more complex systems; experimental methods of construction and interpretation.

MTE
684
Hours
3
Fund Solid State Engineering

Fundamentals of solid state physics and quantum mechanics are covered to explain the physical principles underlying the design and operation of semiconductor devices. The second part covers applications to semiconductor microdevices and nanodevices such as diodes, transistors, lasers, and photodetectors incorporating quantum structures.

Prerequisite(s): MTE 271 or ECE 332
MTE
687
Hours
3
Microstructure Evolution of Materials

The course will cover the fundamentals and state-of-the-art techniques used in mathematical modeling and computer simulation of microstructure formation and control during the solidification and solid state transformations of materials. The concepts and methodologies covered in this course for net-shape casting and ingot remelt processes can be applied, with some modifications, to model other materials processes such as welding, deposition, and heat treatment processes. Modeling and simulation of microstructure evolution requires complex multi-scale computational areas, from computational fluid dynamics macroscopic modeling through mesoscopic to microscopic modeling, as well as strategies to link various length-scales emerged in modeling of microstructural evolution.

MTE
691
SP
Hours
1-3
Special Problems

Credit awarded is based on the amount of work undertaken.

Special Topics Course
MTE
698
Hours
1-12
Non Dissertation Research Hours

Credit is based on the amount of work undertaken on non-dissertation related research in a metallurgical and materials engineering area, the outcome of which is a define result presented in a report, paper, manuscript, or formal presentation at a conference or an MTE seminar. Instructor permission required.

MTE
699
Hours
1-12
Dissertation Research

No description available.