COURSES FOR METALLURGICAL AND MATERIALS ENGINEERING

Metallurgical and Materials Engineering Courses

MTE121 Introduction to Materials
Hours 1
An introduction to the materials science and engineering profession and history. The course includes selected topics useful in the study of metallurgical and materials engineering.

MTE155 Energy, Environment and Materials
FS, N
Hours 4
This course will provide the science background today's citizens need to understand the problems and limitations society faces with respect to energy resources and the environment. Science concepts will be introduced as needed and within the context of energy, the environment, or materials. Students will be encouraged to critically analyze timely examples of energy usage or environmental problems from the news media. Students will gain an understanding of how engineering and technology, especially the development of new materials, can translate science to practical and beneficial outcomes.

Freshmen Seminar, Natural Science

MTE252 Metallurgical Process Calculations
Hours 3
Mathematical quantitative relations of chemical reactions and physicochemical processes; principles of overall mass and energy balances and the application of these principles to metallurgical systems.
Prerequisite(s): CH 102, ENGR 103, and MATH 125

MTE271 Engineering Materials : Structure and Properties
Hours 3
Basic structure of ceramics, alloys, composites, metals, and polymers. Relationships between the structure of materials and their mechanical, electrical, magnetic, thermal, and chemical properties.
Prerequisite(s): CH 101 or CH 117; MATH 125 or MATH 145

MTE275 Engineering Materials Laboratory
Hours 3
Alloy preparation and processing of materials. Materials testing and evaluation, laboratory procedures and techniques, metallography, heat treatment, phase diagrams, hardenability, and mechanical testing. Introduction to technical report writing and application to written laboratory reports.
Prerequisite(s): EN 101
Prerequisite(s) with concurrency: MTE 271

MTE353 Transport
Hours 3
Definition of viscosity, elements of laminar and turbulent flow, and overall mechanical energy balance. Thermal conductivity, steady and transient conduction problems, forced and natural convection, heat transfer, and radiative heat transfer. Definition of binary diffusivity, convection mass transfer, and mass transfer coefficient. The application of the principles covered in the design of specific metallurgical systems.
Prerequisite(s): MATH 238 and MTE 252
Prerequisite(s) with concurrency: MATH 238

MTE362 Thermodynamics Of Materials
C
Hours 4
The fundamentals of thermodynamics applied to typical metallurgical processes and reactions, heterogeneous equilibrium, behavior of solutions, standard states, phase diagrams. Emphasis is placed on the use of basic thermodynamic data, graphical representations of thermodynamic data and equilibrium, and the application of using computational tools to solve problems. Computing proficiency is required for a passing grade in this course.
Prerequisite(s): MTE 252

Computer Science

MTE373 Physical Metallurgy
W
Hours 4
Introduction to the principles of physical metallurgy. Topics include crystal structure, deformation, dislocations, point defects, diffusion, phase diagrams, interfaces, nucleation theory, transformations, and growth. Writing proficiency is required for a passing grade in this course.
Prerequisite(s): MTE 271 and MTE 362

Writing

MTE380 Synthesis, Processing and Manufacturing of Materials
Hours 3
Materials Processing fundamentals as they affect dimensions and microstructure of materials and their application in engineering practice. Survey of classical and modern manufacturing processes for engineering materials.
Prerequisite(s): MTE 271

MTE412 Polymer Materials Engineering
Hours 3
Introduction to the manufacture, processing and applications of organic polymeric materials. The chemistry of polymer manufacture, the molecular structure of polymers, and the structure-property relationships for thermoplastic and thermosetting polymers are covered.
Prerequisite(s): CH 102
MTE416 Fundamentals of Foundry Processing
\textit{C}
Hours 4
Metal casting principles including pattern design, molding materials, conventional and digital molding methods, sand testing, solidification, risering and gating of castings, casting and mold design, microstructure and casting defects and their influence on mechanical properties. Computing proficiency is required for a passing grade in this course.
Prerequisite(s): MTE 362 and MTE 380

Computer Science

MTE439 Metallurgy Of Welding
Hours 3
Thermal, chemical, and mechanical aspects of welding using fusion welding processes. The metallurgical aspects of welding, including microstructure and properties of the weld, are also included.
Prerequisite(s): MTE 380 or permission of instructor

MTE441 Chemical Metallurgy
Hours 4
Application of thermodynamics, fluid flow, and heat and mass transfer to the design and operation of chemical metallurgical processes; roasting, agglomerating, oxidation and reduction reactions, smelting, converting, and refining.
Prerequisite(s): MTE 353 and MTE 362
Prerequisite(s) with concurrency: MTE 443

MTE443 Materials Engineering Design I
Hours 3
Principles of engineering design. Problem formulation, concept design, configuration design, parametric design, detail design, materials selection, manufacturing process selection, prototyping, project planning and cost analysis, application of computer-based design tools, concepts of shared responsibility, teamwork and communication. Analysis of problems, design and development solutions. Oral presentations and written reports. A project will be assigned. Final project presentations will be evaluated by the MTE faculty.
Prerequisite(s): EC 110, MTE 362, 373, 380
Prerequisite(s) with concurrency: MTE 441 and MTE 481

MTE444 Materials Engineering Design II (W)
Hours 3
Capstone design course. Students work in teams on design projects which involve evaluation of industrial based metallurgical or materials problems and emphasize societal impact. Implementation of design principles and the research plan developed in MTE 443. Interim and final design reviews with oral presentations and written reports. Final project presentation will be evaluated by the MTE faculty. Writing proficiency is required for a passing grade in this course.
Prerequisite(s): MTE 416, 441, 443, 455, and 481

MTE449 Powder Metallurgy
Hours 3
The course will cover the topic of powder metallurgy, describing the various types of powder processing and how these affect properties of the components made. Current issues in the subject area, from high production to nanomaterials will be discussed.
Prerequisite(s): MTE 373 and MTE 380

MTE450 Plasma Processing of Thin Films
Hours 3
This course will cover fundamental technology involved in thin film processing. Plasma deposition and etch technology will be discussed. The basics of plasma processing equipment will be detailed, with special emphasis on sputtering tools. A range of thin film applications will be explored, with examples of magnetics, semiconductor, optical, and medical applications. The fundamentals of process optimization using a Design of Experiments will be taught with a test case of process optimization for the final exam.
Prerequisite(s): PH 106 and CH 102 or permission of instructor.

MTE455 Mechanical Behavior Of Materials
Hours 4
Flow and fracture of solids; uniaxial stress-strain as a reference behavior; theories of terminal stability under impact; monotonic, sustained (creep), and repeated (fatigue) loadings of solids under various states of stress.
Prerequisite(s): AEM 201 or permission of instructor.

MTE467 Strengthening Mechanisms in Materials
Hours 3
Mechanisms and micromechanics of strengthening in engineering materials. This course covers the physical phenomena that contribute towards high mechanical strength in engineering materials. Principles for designing high strength materials will be addressed.
Prerequisite(s): MTE 455 or equivalent; or permission from instructor

MTE476 Physical Ceramics
Hours 3
Topics include ceramic raw materials, refractories, thermal properties, mechanical properties, processing, advanced ceramics, etc.
Prerequisite(s): MTE 353 and MTE 362 and MTE 373

MTE481 Analytical Methods For Materials
\textit{W}
Hours 4
Crystallography, physics of X-rays, diffraction by crystalline materials, applications of X-ray, electron and neutron diffraction, and spectrometric analysis of materials. Writing proficiency is required for a passing grade in this course.
Prerequisite(s): MTE 373 or permission of instructor.
Prerequisite(s) with concurrency: MTE 373
Writing
MTE487 Corrosion Science & Engineering
Hours 3
The course is aimed at investigating the underlying fundamental causes of corrosion problems and failures. Emphasis is placed on the electrochemical reactions occurring and the tools and knowledge necessary for predicting corrosion, measuring corrosion rates, and combining these with prevention and materials selection.
Prerequisite(s): MTE 271 and CH 102 or permission of instructor.

MTE491 Special Problems
Hours 1-3
An assigned problem is explored individually. Credit is based on the amount of work undertaken.

MTE492 Special Problems
Hours 1-3
An assigned problem is explored individually. Credit is based on the amount of work undertaken.