Computer science is a multifaceted discipline that encompasses a broad range of topics. At one end of the spectrum, computer science focuses on the theoretical capabilities of computers and on the properties of various general problems and algorithms. At the other applications-oriented end of the spectrum, computer science deals with techniques for the design and construction of machines and with advanced applications of computers in all aspects of our society. Graduates of the program will be prepared for admission to graduate study or for immediate employment in business, industry or government positions involving computer systems and techniques.

- Major
 - Computer Science (BS)
- Minors
 - Computer Science
 - Computing Technology and Applications

Professor and Department Head
- Cordes, David W.

Professors
- Brown, David B.
- Gray, Jeff
- Parrish, Allen
- Xiao, Yang

Associate Professor
- Anderson, Monica
- Borie, Richard B.
- Brown, Marcus E.
- Carver, Jeffrey
- Dixon, Brandon
- Hong, Xiaoyan
- Lusth, John
- Smith, Randy K.
- Vrbsky, Susan V.
- Zhang, Jingyuan

Instructors
- Rebecca Odom-Bartel
- Dixon, Leslie
- Hooper, Dana
- Hooper, Ralph E.
- Morris, Kathleen
- Prater, James M.
- Marc Skipwith
- Wright, Kimberly

CS
100
Hours
4

CS I for Majors
A first course in programming for students majoring in computer science. Language concepts include primitives, variables, sequences, function, selection, iteration and recursion. Software engineering concepts include testing and debugging. System concepts include directories, paths, files, and text editing.

Prerequisite(s): (MATH 112 and MATH 113) or MATH 115 or UA ACT Subject Math Placement 565 or UA Placement Mathematics 440

Prerequisite(s) with concurrency: MATH 125 or MATH 145

CS II for Majors
A second course in programming for students majoring in computer science. Using a high-level language, student use object-oriented practices to study fundamental data structures and algorithms. Issues such as computability, problem complexity and algorithm analysis, efficient searching and sorting, data structures, and the object-oriented programming paradigm are introduced and explained.

Prerequisite(s): (CS 100 or CBH 102 or (CS 150 and ECE 285)) and (MATH 125 or MATH 145)