COURSES FOR CHEMISTRY AND BIOCHEMISTRY

Chemistry and Biochemistry Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH501</td>
<td>Intro Grad Inorg Chem</td>
<td>3</td>
<td>Generally, this course is for entering graduate students whose undergraduate training in inorganic chemistry is insufficient.</td>
</tr>
<tr>
<td>CH505</td>
<td>Medicinal Chemistry</td>
<td>3</td>
<td>Detailed investigation of the drug design process. Includes lead discovery, target identification and validation, pharmacodynamics, pharmacokinetics, and drug delivery systems. Chemical modification to improve efficacy will be emphasized.</td>
</tr>
<tr>
<td>CH510</td>
<td>Scientific Glassblowing</td>
<td>3</td>
<td>No description available</td>
</tr>
<tr>
<td>CH519</td>
<td>Integrated Foundational Chemistry: Physical/Analytical</td>
<td>3</td>
<td>Foundational course in graduate chemistry emphasizing the concepts that underpin and connect all chemistry sub disciplines.</td>
</tr>
<tr>
<td>CH520</td>
<td>Integrated Foundational Chemistry: Structure/Bonding</td>
<td>3</td>
<td>Foundational course in graduate chemistry emphasizing the concepts that underpin and connect all chemistry sub disciplines.</td>
</tr>
<tr>
<td>CH524</td>
<td>Adv Anl Ch I Spec Meth</td>
<td>3</td>
<td>Provides graduate students with knowledge of the fundamental aspects of various modern methods of spectroscopic analysis. Reference to analytical applications and experimental methods is made, where relevant.</td>
</tr>
<tr>
<td>CH526</td>
<td>Chemometrics</td>
<td>3</td>
<td>Chemometrics involves the application of statistical and mathematical methods to chemistry. Areas of emphasis will be data and error analysis, calibration, experimental design, signal processing and transform procedures, and data description and enhancement.</td>
</tr>
<tr>
<td>CH530</td>
<td>Intro Grad Org Chem</td>
<td>3</td>
<td>Generally, this course is for entering graduate students whose undergraduate training in organic chemistry is insufficient.</td>
</tr>
<tr>
<td>CH531</td>
<td>Adv Organ Chem I-Physical</td>
<td>3</td>
<td>Theory and mechanism of organic transformations, detailed evaluation of organic structure, molecular dynamics, molecular orbital interactions, molecular symmetry, stereochemistry of reactions, and energetics of reaction paths.</td>
</tr>
<tr>
<td>CH532</td>
<td>Adv Org Ch II React Synt</td>
<td>3</td>
<td>Fundamentals of organic transformations and advanced synthetic methodology with application to the synthesis of complex organic structures.</td>
</tr>
<tr>
<td>CH549</td>
<td>Adv Ph Ch II Atom/Mol</td>
<td>3</td>
<td>No description available</td>
</tr>
<tr>
<td>CH561</td>
<td>Biochemistry I</td>
<td>3</td>
<td>First-semester course in basic biochemistry. Structure and properties of biological molecules, including proteins, DNA, RNA, carbohydrates, lipids, and enzyme cofactors and prosthetic groups. Introduction to intermediary metabolism and glycolysis. Offered fall semester.</td>
</tr>
<tr>
<td>CH562</td>
<td>Biochemistry II</td>
<td>3</td>
<td>Continuation of basic one-year course in biochemistry. Intermediary metabolism, TCA cycle, oxidative phosphorylation, and catabolism of biomolecules. Biosynthesis of amino acids, nucleotides, carbohydrates, and lipids. DNA and RNA replication, with introduction to recombinant technology. Protein biosynthesis and membrane transport. Offered spring semester.</td>
</tr>
<tr>
<td>CH563</td>
<td>Biochemistry Lab</td>
<td>3</td>
<td>One lecture and one six-hour laboratory. Biochemical techniques within the structure of a semester-long research project. Topics include protein purification and chromatography, spectroscopy, electrophoresis, kinetics, and DNA manipulation.</td>
</tr>
<tr>
<td>CH564</td>
<td>Adv Biophysical Chem</td>
<td>3</td>
<td>The study of physical techniques applied to the development and experimental verification of biochemical hypotheses. Examples include forms of spectroscopy, treatment of multiple equilibria, and enzyme kinetics. Examples of applications are drawn from such areas as oxygen transport, oxidative phosphorylation, and photosynthesis.</td>
</tr>
<tr>
<td>CH565</td>
<td>Adv Bio-Inorganic Chem</td>
<td>3</td>
<td>Study of current knowledge on the roles of metal ions in biological systems, including structural and catalytic functions. Topics include bio-coordination chemistry, spectroscopic and magnetic methods, and kinetics.</td>
</tr>
</tbody>
</table>
CH566 Bioorganic Reaction Mechanisms
Hours 3
This course will be divided into two main areas. We will begin with methods for studying enzyme reaction mechanisms. This section will include steady-state enzyme kinetics, derivation of rate equations, enzyme inhibition, isotope exchange methods, pH and viscosity effects, kinetic isotope effects, and site-directed mutagenesis. We will then utilize these methods in order to investigate the chemical mechanisms enzymes use to catalyze specific reactions (hydrolysis; group transfer; 1,1 hydrogen shift; 1,2 hydrogen shift; C-C bond formations; and redox chemistry). We will also cover the chemistry associated with several cofactors required by enzymes (flavins, thiamin pyrophosphate, tetrahydrofolate, etc).

CH570 Research Techniques Chemistry
Hours 1-6
Independent study in chemistry to learn the tools of chemical research.

CH584 Literature and Communication in Graduate Chemistry
Hours 3
This course is an introduction to researching chemistry literature. Topics covered will primarily be related to scientific critical analysis and effective scientific communication, both written and oral. Students will receive structured guidance from the class instructor(s), chemistry faculty, and their class peers throughout the semester to assist with writing a chemistry research paper and delivering an oral presentation. Successful completion of this course will fulfill the literature seminar requirements (written research paper and seminar) for chemistry graduate students.

CH585 Chemistry Seminars
Hours 1
Course requires attendance at presentations given by graduate students and outside speakers. All graduate students in residence are required to register for seminar during academic semesters except when the student has received permission from the departmental Director of Graduate Studies.

CH586 Research Seminar
Hours 1
Presentation of doctoral dissertation or Plan I Master’s thesis research results.
Prerequisite(s): CH 585

CH599 Thesis Research
Hours 1-6
No description available

CH601 Adv Inor Chi:Strct Mth
Hours 3
No description available

CH609 Organometallic Chem
Hours 3
Structure, bonding, and reactivity of organotransition metallic compounds, mechanisms of transformations and fundamental reaction types, applications to catalysis and organic synthesis.

CH621 Trends In Analytical Chem
Hours 3
No description available

CH626 Surface Analytical Techniques
Hours 3
Introduces the student to the instrumentation and techniques used to study surfaces and interfaces. Spectroscopic, microscopic, desorption, and vacuum techniques are covered.

CH627 Mass Spectrometry
Hours 3
Deals with all areas of mass spectrometry (MS), including single and multiple stage MS and chromatography/MS. The emphasis is on fundamental principles and instrumentation, as well as applications and data interpretation.

CH635 Sel Topics In Org Chem
SP
Hours 3
No description available

CH637 Spectroscopic Techniqa
Hours 3
Fundamentals of spectroscopic techniques for structure determination of organic molecules. Theory and application of IR, NMR, and MS in organic chemistry.

CH640 Adv Research Techniques Chem
Hours 1-6
Independent study in chemistry to learn advanced research techniques used in all areas of chemical research.

CH641 Initial Research Review
Hours 1
MS and PHD students present their initial research project progress to their thesis or dissertation committee, respectively.

CH642 Oral Candidacy Exam
Hours 1
PHD students prepare and present a third-year research report and defend an original research proposal in front of their dissertation committee.
Prerequisite(s): CH 641

CH649 Dissertation Research
Hours 1-12
Research efforts for dissertation content.
Prerequisite(s): CH 681