COURSES FOR BIOLOGICAL SCIENCES

Biological Sciences Courses

BSC500 Vertebrate Funct Morphol
Hours 4
Morphology of animals, primarily vertebrates, with emphasis on functional aspects of anatomy. Laboratory deals mainly with comparative anatomy of the vertebrates. Offered fall semester.

BSC501 Molecular Ecology
Hours 3
This course examines how variation in nucleic acid or protein sequences allow organisms or populations to function within, and adapt to, their environment.

BSC505 Introduction to Graduate Studies in Biological Sciences
Hours 2
This graduate level course presents topics designed to accelerate the progress and success of incoming and early stage graduate students as they transition into a M.S. or Ph.D. program in Biological Sciences. As a career preparation course, it aims to provide graduate students the practical skills and tools that will be applicable throughout their careers, regardless of their research focus.

BSC507 Research Tech In By
Hours 1-6
Individualized instruction and the application of research techniques to specific problems for graduate students in the department. Offered fall and spring semesters.

BSC511 Phage Discovery Laboratory
Hours 3
A research-based laboratory course that isolates and characterizes bacterial viruses (phages) using modern microbiology, microscopy, and molecular biology techniques.
Prerequisite(s): Graduate Standing or permission of the instructor.

BSC512 Limnology
Hours 3
A study of freshwater environments and organisms living in lakes, ponds, and streams. Offered fall semester.

BSC515 Wetland Ecology
Hours 3
An in-depth analysis of wetland ecology emphasizing the biology and ecology of vascular plants, including plant adaptations to anaerobic soils, reproductive adaptations, habitat, and plant zonation, and the role of plants in ecosystem function.

BSC516 Disease Ecology
Hours 3
This class will focus on the study of host-pathogen interactions within the context of their environment and evolution.

BSC517 Environmental Modeling
Hours 3
An integrated survey of quantitative principles and computer-based solution techniques important for understanding environmental systems and for environmental problem solving. Offered alternate fall semesters.

BSC519 Evolutionary Genomics
Hours 3
Evolutionary Genomics explores fundamental aspects of genome structure and function in an evolutionary context. Course topics range from chromatin structure evolution to whole genome duplication, and explores how these genomic traits impact the evolution of different organisms.

BSC520 Principles Of Systematics
Hours 4
An introduction to the principles, methods and applications of systematic zoology and the zoological classifications. Offered alternate fall semesters.

BSC521 Personalized and Genetic Medicine
Hours 3
This course will examine biological techniques that are advancing medical research and care. Topics include personalized medicine, direct-to-consumer genetic testing, predictive medicine, pharmacogenomics, and preimplantation genetic diagnosis. It will also explore concomitant ethical, legal, and societal ramifications related to many of these discoveries, such as ownership of biological material, informed consent for human experimentation, the burden of knowledge regarding genetic information, eugenics, and the Genetic Information Non-Discrimination Act.

BSC522 Biology of Cancer
Hours 3
This course is an introduction to the biological principals that explain the origins, development, pathology, and treatment of cancer. Students will work in teams assigned to particular types of cancer and will investigate what is known on various topics as related to that type of cancer.
Prerequisite(s): Must be enrolled in university graduate program.

BSC524 Human Physiology
Hours 3
Examines the cardiovascular, digestive, endocrine, muscular, neural, renal, reproductive and respiratory systems. Offered spring semesters.

BSC525 Human Physiology Lab
Hours 2
Centers on principles of physiology and instrumentation for physiology. Offered alternate fall semesters.
Prerequisite(s): None. Corequisite: BSC 524.

BSC526 Computational Biology Lab
Hours 3
Computational Biology Lab introduces the programming skills, statistical methods and conceptual foundations necessary to pursue computational analysis and modeling of biological systems. This course is designed for biology students, and it is not expected that students will have prior with experience with computing or programming.

BSC528 Biology Of Fishes
Hours 4
A survey of the structure, function, ecology, and classification of fishes. Offered alternate spring semesters.
Courses for Biological Sciences

BSC530 Introduction to Pharmacology
Hours 3
This course will cover the basic principles of pharmacology including mechanisms of drug action and drug absorption, distribution, metabolism, and excretion.

BSC531 Pathogenic Microbiology
Hours 3
A study of microorganisms related to health and disease. Offered spring semester.

BSC534 Plant Systematics
Hours 4
Characteristics and distribution of the major families of vascular plants, and practice in the collection and identification of flowering plants. One weekend field trip is required. Offered alternate spring semesters.

BSC535 Immunology
Hours 4
Thorough exploration of various aspects of modern immunology at the molecular and cellular levels. Offered fall semester.

BSC539 Bch/Molecular Biology Lab
Hours 3
A survey of the common analytical techniques used in molecular biology. Topics include protein purification and characterization, enzymology, DNA isolation and restriction endonuclease mapping, and gene cloning. Offered spring semester.

BSC541 Developmental Biology
Hours 3
The course provides basic information about events in developing animal systems, emphasizing cellular, molecular, and genetic research approaches to the study of development. Offered spring semester.

BSC542 Integrated Genomics
Hours 4
This advanced undergraduate/graduate level course will introduce you to major technologies and concepts in genomics, familiarize you with some publicly available bioinformatics databases and tools, contribute to the public knowledge base through your own bioinformatics and literature based research, and give you hands-on experience with genomics wet lab methods. This course will also provide information on careers in biotechnology.

BSC544 General Virology
Hours 3
The molecular biology of bacterial, animal, and plant virus replication, including the biophysical, biochemical, and biological properties of virus particles. Offered spring semester.

BSC548 Animal Behavior
Hours 3
This course is designed to provide modern perspectives on the study of animal behavior, pulling from fields as diverse as evolutionary biology, ecology, neurobiology and economics. However there will be a historical undercurrent which will illustrate the roots of this truly interdisciplinary field.

BSC549 Endocrinology
Hours 3
A detailed examination of the vertebrate endocrine system that uses a comparative approach to explore intricate relationships between the brain, endocrine glans, hormones and target organs.

BSC550 Fundamentals of Biochemistry
Hours 3
A one-semester survey of protein structure, enzyme kinetics, bioenergetics, and metabolism and its regulation. Offered fall and spring semesters.

BSC551 Bch/Molecular Biology II
Hours 3
A one-semester survey of the synthesis, processing, and degradation of DNA, RNA, and protein and the regulation of these processes. Offered spring semester.

BSC553 Biochemistry Lab
Hours 3
This course is an advanced laboratory course which will introduce students to some basic concepts and common modern techniques used in biochemical/molecular biology/cell biology research. A broad spectrum of techniques will be presented to students, including native protein purification from animal tissue, chromatography, electrophoresis, characterization of molecular weight and sequences of the purified protein through mass spectrometry, enzymatic kinetics studies, and spectroscopic analysis. For students who have interest and aspire to pursue a research career in biochemistry, cell biology, molecular biology, immunology and/or other related biological science areas, this course will provide basic training and experience for a smooth start for their future laboratory work.

BSC555 Chemical Ecology
Hours 3
Chemical interactions underlie and generate the biotic environment in which we live. This course will examine chemical interactions between organisms that can happen on different levels, from cell-cell interactions, intraspecific and multilithic-level interactions, to community-wide interactions and ecological processes.

BSC556 Microbial Ecology
Hours 3
A study of microorganisms in the environment, with emphasis on their roles in energy transformations, biogeochemical cycles, and biotic interactions. Offered alternate fall semesters.

BSC558 Drug Discovery Laboratory
Hours 3
A research-based laboratory course that focuses on the identification of new drug leads from natural products using modern pharmacognosy, phytochemistry and phytopharmacology techniques.

BSC560 Human Developmental Biology
Hours 4
Development of the human embryo and fetus, including molecular, physiological, and structural aspects of morphogenesis and functional development. Offered irregularly.
BSC564 Biology Of Algae
Hours 4
Freshwater and marine algae and their structure, development, taxonomy, and distribution. Offered irregularly.

BSC565 Principles Of Toxicology
Hours 3
No description available

Prerequisite(s): BSC 300

BSC567 Data Management and Visualization in R
Hours 3
An introduction to the R computing environment with emphasis on data management and visualization.

Prerequisite(s): BSC 300 Minimum Grade of B or BSC 310 Minimum Grade of B or BSC 385 Minimum Grade of B

BSC569 Histology Of Vertebrates
Hours 4
No description available

BSC570 Principles of Population Genetics
Hours 3
Population genetics is the study of how evolutionary forces (genetic drift, natural selection, mutation, and gene flow) affect allele and genotype frequencies in populations. Population genetics is a field with a rich theoretical history that has allowed scientists to make predictions about these evolutionary processes. With the advent of massive amounts of genetic data in many species, it is now possible to test these predictions, and a solid foundation in theory, its expectations, and assumptions is crucial for interpreting results from genetic analyses. Students should expect to learn how evolutionary forces acting on individuals affect patterns of inheritance and ultimately drive the changes we see between species.

Prerequisite(s): Must be enrolled in university graduate program.

BSC571 Plant Physiology
Hours 3
Plant physiology is a survey course covering all aspects of plant transport, translocation of nutrients, plant biochemistry, plant metabolism and plant growth and development considered in depth.

BSC573 Bioinformatics
Hours 3
Bioinformatics BSC 473/573 is a lecture course that covers the tools and approaches necessary to perform computational analysis of large datasets. We will focus on analyzing high-throughput sequencing data although the tools we will learn are applicable to a wide range of modern biological questions. Specific topics include operating in a UNIX/bash shell environment, scripting, genome assembly, alignment, and algorithms. BSC 473/573 is a writing course and writing proficiency within this discipline is required for a passing grade in this course.

Prerequisite(s): Graduate standing

BSC575 General Entomology
Hours 4
A survey of the structure, function, classification, and habits of insects. Offered irregularly.

BSC576 Aquatic Insects
Hours 4
A survey of aquatic insects, with emphasis on their identification, life histories, and ecology. Offered alternate spring semesters.

BSC577 Invertebrate Zoology
Hours 4
The classification, morphology, evolution, and ecology of invertebrate animals.

BSC578 Microbiomes in Health and Disease
Hours 3
This class focuses on the study of host-microbiome interactions within the context of their environment, evolution, and global health.

BSC580 Plant Ecology
Hours 3
This course will examine the ecology of plants at different levels: individual, population and community.

Prerequisite(s): None

BSC581 Foundations in Advanced Biostatistics with Applications to R
Hours 3
This course provides an overview to common statistical methods used in biological research, using case studies from biology, ecology, and natural resources management. The overarching objective of this course is to give students the ability to use and effectively evaluate biological data. We will demonstrate and conduct statistical analyses with an emphasis on utilizing the statistical computing language, R, to apply statistical concepts to biological and ecological data.

Prerequisite(s): Graduate standing or permission of the instructor.

BSC582 Conservation Biology
Hours 3
A thorough examination of the principles of conservation biology. Offered alternate spring semesters.

BSC583 Evolution
Hours 3
No description available

BSC584 Aquatic Biology Seminar
Hours 1
Review and discussion of current topics in aquatic biology. Offered spring semester.

BSC585 Foundations in Forest Resources and Conservation
Hours 4
This course provides an introduction to the foundational ideas of forest resources and conservation. The course includes a history of the forestry profession and a variety of perspectives to develop students’ knowledge of forestry field and research methods. This course also helps students develop an understanding and appreciation of the diversity of forest resources both here in Alabama and globally.
BSC587 Biogeography
Hours 3
Examination of the ecological and historical factors influencing the geographical distribution of plants and animals.
Prerequisite(s): Undergraduate or graduate-level course in ecology.

BSC590 Stream Ecology
Hours 4
A thorough study of the structural (physical and biological) and functional (energy flow, nutrient cycling, community structure) attributes characteristic of stream and river ecosystems. Offered alternate spring semesters.

BSC593 Cell Cycle Regulation
Hours 3
In-depth review and discussion of recent scientific research literature dealing with mechanisms of eukaryotic cell cycle regulation and their significance in human cancers. Provides a foundation for further studies in the cell cycle field, which impacts many areas of cell, molecular, and developmental biology.

BSC594 Signal Transduction Neuroby
Hours 3
Seminar on current topics related to signal transduction, as it pertains to the molecular basis of neurobiology and development. Offered alternate fall semesters.

BSC598 Non-Thesis Research
Hours 1-15
Non-Thesis Research.

BSC599 Thesis Research
Hours 1-15
This independent research course partially fulfills required master’s-level research thesis hours toward the master’s degree in Biology. The course is conducted under the guidance of the thesis advisor. Material covered will be of an advanced nature aimed at providing master’s students with an understanding of the latest research and current developments within the field. Discussion and advisor guidance will be directed towards readings of research articles and development of research methodology, with the aim of producing an original research contribution that represents a novel development in the field, or a novel perspective on a pre-existing topic in the field.

BSC601 Biological Sciences Seminar
Hours 1
This course will introduce graduate students to a diversity of current topics and expand their knowledge of the methodology and application of research and research methods in the biological sciences. In addition to attending seminars by invited speakers and departmental faculty members, the course will also provide graduate students with instruction and practice in the oral presentation of research data.

BSC602 Adv Molecular Res Sem
Hours 1
Student presentations of research background and current results. Students may enroll each semester. Offered fall and spring semesters.

BSC604 Scientific Writing and Data Presentation
Hours 3
This course will teach students writing skills for grant proposal and research paper preparation as well as other data presentation techniques in the biological sciences.
Prerequisite(s): Graduate standing or permission of the instructor.

BSC605 Ecology Systematics Sem
Hours 1
Seminar.

BSC607 Adv Research Tech In By
Hours 1-6
Individualized instruction and the application of research techniques to specific problems at an advanced level for graduate students in the department. Offered fall and spring semesters.

BSC610 Pedagogy in Biological Sciences
Hours 3
Discussion of topics associated with teaching biology at the college-level, including reviews of the literature associated with science education, metacognition, and the scholarship of teaching and learning.

BSC615 Integrative Biology Seminar
Hours 1
This course is designed to provide modern perspectives on integrative biology through primary literature review and by reviewing graduate student manuscripts, conference presentations, and grant proposals. The course also will provide opportunities for graduate students to gain professional development advice and to learn more about statistical techniques for analyzing experimental data.

BSC652 Community Ecology
Hours 3
Thorough investigation of theory and empirical studies of ecological communities (plant, animal, microbial), including methods, community structure, diversity, succession, links to ecosystem function, resource management. Offered alternate spring semesters.

BSC656 Microscopical Techniques
Hours 4
An introduction to the methods and applications of electron microscopy in biological research, including techniques for preparation of biological specimens, operation of the transmission and scanning electron microscopes, and photography. Offered irregularly.

BSC657 Advanced Techniques in Microscopy
Hours 1
This course provides individual training on the use of different equipment in the Optical Analysis Facility in support of graduate student research. Emphasis will be placed on sample preparation techniques and advanced microscopy usage (e.g., confocal microscopy, transmission electron microscopy and scanning electron microscopy).
BSC666 Disease Models and Mechanisms

Hours 3

A graduate level seminar on current topics related to use of animal model systems, as they pertains to the molecular basis of human disease. This course is designed to expose students to recent research in a variety of diseases. The instructor and students will give lectures that provide a general survey of current disease research topics. During each class, a student will give an introduction on the particular disease being discussed that week. This introduction usually contains some basic information about the disease (e.g. symptoms, incidence rate, diagnosis and prognosis) as well as the known and unknown aspects of what causes the disease. Detailed student presentations will then follow on specific and recent literature within that topic with a focus on molecular mechanisms. This is designed to foster interactive class discussion and to strengthen the analytical and presentation skills of graduate students in cell and molecular biology. Emphasis on critical thinking and evaluation of scientific approaches and application of methods will be a major component of this course. In addition to the presentation of a disease topic and participation of the course in each class, as a final assignment, students will be asked to write a “News and Views” type “preview” article on a recent or in-press article related to human disease modeling. If demonstrating appropriate scholarly value, select articles might be revised under the supervision of the instructor and then submitted for publication to an appropriate journal, such as Disease Models and Mechanisms or the Journal of Neuroscience. Specific guidelines for this assignment are provided. Assessment of student progress in terms of pre-test/post-test, written critiques of presentations and writing assignments will be provided. Following each class, Dr. Caldwell will provide immediate feedback on their presentation and suggest areas for improvement. Outline of Course Topics: 1) the molecular basis of select diseases 2) strengths/weaknesses of specific animal model systems (worms, flies, mice, zebrafish) 3) role of genetic, cellular, and molecular processes in disease 4) application of model systems toward therapeutic development.

Prerequisite(s): Graduate Student Status

BSC675 Global Change Biology

Hours 3

Students will take a detailed look at climate change across a variety of scales (species to biomes) using primary literature sources. Each student will lead a discussion in an area of climate change of their choice (e.g. climate change leading to disease, climate change and biological feedbacks, alteration in climate and storm intensity, decline of amphibians); these topics need not be limited to biological subjects. Students will be expected to participate in critiques of primary literature, class discussions, and the development of an individual proposal (including preproposal, budgets, and panel discussions of funding).

Prerequisite(s): Must be enrolled in University Graduate Program.

BSC681 Topics in Drosophila Biology

Hours 1

This is a graduate level course on the current genetic research methods and technologies using Drosophila as a model system. The course covers topics including using Drosophila to model human disease, developmental biology, evolution and development, and ethics and professionalism in science.